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N1 THE ADAPTIVE IMPLEMENTATION OF PISARENKO S HARMONIC RETRIEVAL METHOD

V. U. Reddy , B. Egardt and T. Kailath
~o R T 2 o476 _ _

S 0SUMMARY

The development of adaptive techniques for estimating the parameters

of sinusoidal signals in additive noise is important in many applications.

The so-called adaptive line enhancer(ALE) proposed by Widrow et al.[13 has
been a popular solution. The ALE is a tapped-delay-line filter of some

fixed length, whose tap gains are recursively adjusted by using the so-called

LMS[1] algorithm so that they converge to the solution of the normal equ-

ations for the one-step minimum mean-square-error prediction problem. Another

popular solution uses a so-called ladder or lattice filter whose parameters
are adjusted by using a technique, due to Burg[2], based on minimizing the

sum of certain forward and backward one-step prediction residuals. Burg's

technique is an off-line one. Griffiths[3] merged the above approaches by

proposing a lattice filter whose coefficients were adapted by using the

LMS algorithm, leading to what is often called a gradient lattice(or ladder)

filter.

The above three approaches all yield spectral estimates with fairly
sharp peaks but the estimates of the sinusoidal frequencies invariably

appear to be biased when the sinusoids are observed in the presence of

additive white noise.

In an attempt to improve the above methods with respect to bias,

Ulrych and Clayton[4] havp proposed a least-squares fitting of an auto-

regressive model, based on a criterion involving both forward and back-

ward prediction errors but, unlike Burghs method, without using a ladder

filter model. With the help of simulation results they have demonstrated

that the bias in the spectral estimates can be reduced significantly

compared to the Burg technique. It should be noted, though, that this is
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true only for short data lengths, since all the above techniques give

identical results for large data lengths.

Possibilities for improvement of the above approaches becomes apparent

when one considers that they were all designed to converge to the optimum

linear least-squares solution for the prediction of any random process,

and do not specifically exploit the fact that the signal,& are

sinusoidal. Pisarenko[5] was perhaps the first to attempt to do this in his

so-called "harmonic retrieval" method, which involves determining the mini-

mum eigenvalue and the corresponding eigenvector of the covariance matrix

of the observed random process. Thompson[6] noted that this eigenvalue-

eigenvector computation was equivalent to a certain constrained gradient-

search procedure for obtaining an adaptive version of Pisarenko's method.

Thompson's simulations verified that the frequency estimates provided by

his procedure were unbiased. However, the main cost of this technique was

that the initial convergence rate may be very slow for certain poor

"initial conditions".

One of the goals of this paper is to consider a way of providing faster

initial convergence by using a different algorithm for the above problem.

Restating the constrained minimization as an unconstrained nonlinear pro-

blem, we derived the following two adaptive algorithms.

Consider the adaptive filter with constrained coefficients, as sugg-

ested by Thompson, shown in Fig.1. The observed process, consisting of a
sum of sinusoids and white noise, is denoted by a time series x(k). The

filter output e(k) can be expressed as the inner product

e(k)= ATX(k) (1)

whereT
A= [SO" .......... .L_11 T  (2a)

X(k)= [x(k),x(k-1) ...... ,x(k-L+1)]T (2b)

and A= A/IIAJI

is the constrained unit-norm vector. T denotes the matrix transpose.

a. Gradient-Type (LMS) Scheme

The adaptation criterion for the filter of Fig. 1 is

J= iE[e 2 (k)] (3)

Expressing e(k) in terms of unnormalized weight vector A,

e(k)= ATX(k)/ (A If (4)
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the gradient estimate at k-th sample instant is

V71j= 1 [ e(k)X(k)- e2 (k) A(k-1) ] (5)

It A(k-1)II i1 A(k-1)jI
The time update for the normalized i-th coefficient is then given by

ai(k)= o((k)jii(k-1)-/k[e(k)x(k-i)-e (k)ai(k-1)] } (6

where 0((k)= II A(k-1)II / A(k) 11

and f-t-is a positive scalar constant. Equation (6) describes the constrained

LMS algorithm.

The stationary points of the above algorithm are given by the equation

Ek[X(k)-e(k)A] e(k)} =0
which, using Eq.(1), can be simplified to give

"A,.

EtX(k)x T (k) A=A E JX(k)xT(k)j A.A
Clearly, every eigenvector of the covariance matrix satisfies this equation.

By a somewhat more involved argument it can be shown that only the eigen-

vector corresponding to the minimum eigenvalue gives a stable stationary

point.

b. Approximate Deterministic Least-Squares Algorithm

For an alternative algorithm, we choose the adaptation criterion for

the filter of Fig. as the minimization of

V= I ,e2 (s) (7)

with respect to the unit-norm vector A. Because of the constraint on the

weight vector, the minimization of (7) is a nonlinear problem and an exact

least-squares solution does not appear to exist. We, therefore, derive an

approximate solution using a Gauss-Newton type algorithm.

Once again, expressing e(s) as

e(s)= ATX(s)/1IA II Accesston For
NTIS GRAXI

we obtain j- DTIC TAI

1 e(s)[X(s)- Ae(s)) JustlI iou , - (8)

IIAII --- 0
and -y
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where

(s)= X(s) - Ae(s) (10)

From (8),(9) and (10), the Gauss-Newton algorithm can be obtained as

follows:

A(k)= o((k)[A(k-1)-P(k)'U(k)e(k)] (11a)
P(k-1) ?(k ) T (k)P(k-1)

P(k)= P(k-I)- + P (lb)1+ (k)P(k-1) P(k)

A

'F(k)= X(k)- A(k-1)e(k) (1c)

where o((k) is a scalar constant whose value is chosen such that the updated
weight vector has unit norm. In practical applications,an exponential wei-

ghting with the so-called forgetting factor, Xpis applied to the data so

as to track the slowly varying parameters of the data. This weighting ref-

lects in recursion (11b) in two ways. i) The right-hand-side is divided by

, and ii) unity in the denominator is replaced by .
Simulations have been performed to study the properties of the above

two schemes. Figures 2 and 3 show the spectral estimates obtained with the
two techniques. Two sinusoids of normalized frequencies 0.15 and 0.20 are

used in the examples. The most important conclusions that can be drawn from

the results are the following.

The least-squares-type algorithm has faster initial convergence. For

poor signal-to-noise ratio, both algorithms perform similarly close to the

true parameters. The removal of the bias in the frequency estimates is

slower than the resolution between different frequencies.
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Fig. 1 Constrained AR spectral estimator.
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(b) Approximate least-squares algorithm (X=0.98, P(O)=100)

Fig. 2 Simulated spectral estimates (SNR=O dB, 1=7)
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(b) Approximate least-squares algorithm (X=0.98, P(O)=ioo)

Fig. 3 Simulated spectral estimates (SNR=12 dB, L=5)




